

Course Title

Introduction to Computational Materials Science

Lecturer

Dr Oswaldo Dieguez (TA: Netanela Cohen)

Semester

Bet

Course requirements

Any course on programming (for example, 0509.1820 Programming in Python)

Final grade components

25% Lecture Attendance, 25% Homework, 50% Exam (multiple-choice test).

Homework is due every week (no late submission is accepted). If you get a higher grade in the Exam than in the Homework, your final grade will be the one of the Exam.

Course schedule

Subject and Requirements (assignments, reading materials, tasks, etc.)	
Introduction to the Course	
The Random Walk Model I	
The Random Walk Model II	
Simulation of Atomic Systems I	
Simulation of Atomic Systems II	
Molecular Dynamics I	
Molecular Dynamics II	
The Monte Carlo Method I	
The Monte Carlo Method II	
Molecular and Macromolecular Systems	
Kinetic Monte Carlo I	
Kinetic Monte Carlo II	
Review	
Required course reading	

None

Optional course reading

The Topics of the Course are discussed in:

• Introduction to Computational Materials Science: Fundamentals to Applications, by Richard LeSar, Cambridge University Press (2013).

Other books that cover some of the topics of the course (on a more advanced level) are:

• Computer Simulation of Liquids, by M.P. Allen and D.J. Tildesley, Oxford Science Publications (1989).

• Computational materials science: the simulation of materials microstructures and properties, by D. Raabe, Wiley (1998).

• Understanding Molecular Simulation: From Algorithms to Applications, by D. Frenkel and B. Smit, Academic Press (2001).

• The Art of Molecular Dynamics Simulation, by D.C. Rapaport, Cambridge University Press (2004).

• Modeling Materials: Continuum, Atomistic and Multiscale Techniques, by E. B. Tadmor and R.E. Miller,

Cambridge University Press (2011).

Comments

Lectures will be delivered on Campus if allowed; otherwise through zoom. Recordings will be made available.

