

Full Syllabus

Course Title

Models in Population Biology

Lecturer

Yoav Ram

Semester

Bet

Course requirements

Python, Mathematics A & B, Statistics, Intro to Biology C or Ecology, Evolution or Molecular Evolution or Population Genetics

Final grade components

Grading will be based on bi-weekly assignments and a final project at the end of the course. Assignments will include implementation of existing models and methods; final project will require students to design a new model or extend an existing one and implement it.

Course schedule

Class no. / Date	Subject and Requirements (assignments, reading materials, tasks, etc.)
1	Introduction to models in biology
2	Continuous-time univariate deterministic model: population growth models
3	Continuous-time multivariate deterministic model: Lotka-Volterra model
4	Discrete-time univariate deterministic model: Haploid selection
5	Discrete-time multivariate deterministic model: Age-structured populations
6	Discrete-time stochastic model: Wright-Fisher model
7	Continuous-time stochastic model: SIR model
8	Maximum likelihood estimation: Molecular clock
9	Bayesian inference: Neutral theory for species abundance
10	Generalized linear models 1: Exponential growth
11	Generalized linear models 2: Demography with count data
12	Likelihood-free inference: Animal social networks

Required course reading

Optional course reading

A Biologist's Guide to Mathematical Modeling in Ecology and Evolution / Sarah P. Otto and Troy Day

Comments

-

Full Syllabus

